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ICs in Modern Phones & Devices
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High-Density PCB
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Printed Circuit Board (PCB)

4

Main Processor
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RF Solid State Modules
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Oscillator

• An oscillator generates periodic signal (e.g., 
sinusoidal signal, square wave, sawtooth, etc).

• No input required (no external excitation), just a 
DC power supply (for biasing, energy).

• Sometimes oscillators are named based on output 
signal frequency:
– Low-frequency oscillator (LFO) generate frequencies 

below 20 Hz, say to feed audio synthesizers.
– Audio oscillator produces frequencies in the 

audio/music range, 20 Hz to 20 kHz.
– Radio Frequency (RF) oscillator or Microwave oscillator 

produces signals in the range of 100 kHz and higher.
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Oscillator Classification

• Linear or harmonic oscillator: output is sinusoidal (or almost-
sinusoidal) signal.

• Most common type in communication systems (produce carrier).
• Use amplifier (e.g., transistor or operational amplifier) with 

positive feedback through frequency-selective filter.
• Nonlinear or relaxation oscillator: output is non-sinusoidal 

periodic signal, (e.g., square, sawtooth, triangle wave, etc).
• Use energy-storage element (mainly capacitor, rarely inductor) 

plus a switching device (Latch, Schmitt trigger, etc) connected in 
feedback loop.

• Switching device charges/discharges energy-storage element, 
(e.g., causing capacitor voltage to increase/decrease 
periodically).

• Square-waves used as digital clocks. Triangle or sawtooth waves 
are used as sweep signals (oscilloscopes, TV, etc), etc.
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Oscillator Implementations

• Harmonic oscillator implementations:
– Armstrong oscillator
– Hartley oscillator
– Colpitts oscillator*
– Clapp oscillator*
– Pierce oscillator*
– Phase-shift oscillator
– Wien-Bridge oscillator … and many more

• Relaxation oscillator implementations:
– Multivibrator (e.g., the popular NE555 timer IC)
– Ring oscillator
– Comparator-based oscillator
– Schmitt trigger oscillator … and many more
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Armstrong Oscillator
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Hartley Oscillator
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Colpitts Oscillator
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Clapp Oscillator
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Pierce Oscillator
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Phase-Shift Oscillator
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Wien-Bridge Oscillator
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Astable Multivibrator
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Astable Multivibrator

18

Capacitors repeatedly charge (output voltage increases to ≈ -..) 
then discharge (output voltage drops to ≈ 0.2 V), resulting in 
periodic signal at 23 � .
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Q2 ON & Q1 OFF

19

• Q2 just turned ON because its -45 just built up to 0.7 V.
• Earlier C2 charged to 8.3 V 

(depending on how long it was 
charging through R4).

• Q1 now has -45 = 68.3 + 0.2 =6 8.1 V, so Q1 switches OFF.
• Q1 is now open circuit, 7. = 0.
• C1 charges through R1 (small),

so its voltage builds to 8.3 V.
• C2 right plate is connected to -.5 89: ≈ 0.2 V, hence C2 

discharges through Q2, or we
can say C2 charges slowly 
through R3 (big) to 60.5 V.

• Throughput 2$ � ≈ 0.2 V.
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Q2 ON & Q1 OFF
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• Notice 2# � increases 
(relatively fast) from 
0.2 V to about 9 V (not 
immediate, but fast 
enough).

• -45 for Q1 builds up 
slowly from 68.1 V to -45 = 6 60.5 + 0.2 =0.7 V

• Once 0.7 V is reached, 
Q1 switches ON.
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Q1 ON & Q2 OFF
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• Q1 just turned ON.
• Earlier C1 charged to 8.3 V.
• Q2 now has -45 = 68.3 +0.2 = 68.1 V, so Q2 switches 

OFF.
• Q2 is now open circuit, 7. = 0.
• C2 charges through R4 

(small),  so its voltage builds 
to 8.3 V.

• C1 right plate is connected to -.5 89: ≈ 0.2 V, hence C1 
discharges through Q1, or we
can say C1 charges slowly 
through R2 (big) to 60.5 V.

• Throughput 2# � ≈ 0.2 V, but 2$ � increases from 0.2 V to 
about 9 V.
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Multivibrator (NE555)
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Ring Oscillator

24



2/27/2024

13

Copyright © Prof. Mohammed Hawa Electrical Engineering Department, The University of Jordan

Comparator-based Oscillator
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Schmitt Trigger Oscillator
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Building Harmonic Oscillator

27

• A typical oscillator 
consists of three 
components:
– Amplifier

– LC tank (resonant 
circuit or resonator or 
frequency-selective 
filter)

– Positive feedback

• The frequency of the oscillator is controlled 
by the LC tank (resonant circuit).
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Oscillation Build Up: Transient
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Available Active Elements
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• Triode or Vacuum 
Tube or Thermionic 
Valve

• Frequency ~4 GHz

• Old hardware
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Transistors
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• Bipolar Junction 
Transistor (BJT)

• Frequency ~20 GHz
• Heterojunction Bipolar 

Transistor (HBT)
• HBT is BJT that uses 

differing 
semiconductor 
materials for emitter 
and base to build a 
heterojunction

• Frequency ~100 GHz
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Field-Effect Transistor (FET)
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• Junction-gate FET (JFET)
• Metal-Oxide-

Semiconductor FET 
(MOSFET)

• Frequency ~30 GHz
• Metal-Epitaxy-

Semiconductor Field-
Effect Transistor 
(MESFET)

• Similar to JFET but with 
Schottky (metal–
semiconductor) junction 
instead of p–n junction for 
gate. 

• Frequency ~50 GHz JFET MOSFET
enhancement
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Transistors
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• High-Electron-
Mobility Transistor 
(HEMT)

• Similar to FET 
incorporating a 
junction between two 
materials with 
different band gaps 
(i.e. a heterojunction)

• Frequency ~600 GHz
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Cavity Magnetron
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• Cavity magnetron is high-
power vacuum tube used 
in microwave ovens and in 
linear particle accelerators.

• Generates microwaves 
using the interaction of a 
stream of electrons with a 
magnetic field, while 
moving past a series of 
cavity resonators (small, 
open cavities in a metal 
block).

• Frequency ~100 GHz
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Gunn Diode
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• Gunn diode consists of heavily 
N-doped on each terminal, 
with thin layer of lightly N-
doped material between them.

• Based on "Gunn effect" and 
provides negative resistance 
when biased properly.

• Used for oscillators in radar 
speed guns, microwave relay 
data link transmitters, etc. 

• Frequency ~200 GHz.



2/27/2024

20

Copyright © Prof. Mohammed Hawa Electrical Engineering Department, The University of Jordan

IMPATT Diode
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• IMPATT (Impact 
Ionization Avalanche 
Transit-Time) diode is 
high-power 
semiconductor diode.

• Provides negative 
resistance for oscillators 
at microwave 
frequencies.

• Frequency ~350 GHz
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Pi-type or T-type Feedback Circuits

40
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Main Pi-type Networks
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• Main Pi-type networks 
that are well-suited to 
amplitude saturation 
characteristics of FET 
and BJT active devices, 
resulting in stable 
oscillation.
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FET Crystal Oscillator

42

• FET crystal oscillator as a Clapp oscillator

• Piezoelectric crystal equivalent circuit is series RLC.
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Feedback for Differential Amplifier

43
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Common-Emitter BJT Clapp

44
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BJT Clapp Oscillator
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• Parasitic base-emitter 
capacitance can be 
absorbed into C1.

• Parasitic collector-
emitter capacitance can 
be absorbed into C2.

• Parasitic collector-base 
capacitance cannot be 
absorbed (so extra care 
that Ccb does not result 
in instability).
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Clapp Other Configuration
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Clapp Oscillator

47

• Avoid delivering power to 
Rc, and only deliver it to 
load RL using a choke 
inductor Lc (energy storage, 
not onsumption)

• Choke is small resistance 
(almost short circuit) in DC, 
so applies bias.

• Choke is large resistance 
(open circuit at RF), directs 
voltage to RL and allows 
large output voltage swing.

• Cc is large coupling 
capacitor blocks DC, but 
has small impedance at RF.
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Colpitts FET Oscillators
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Colpitts Resonant Frequency

49

• Assume amplifier 
input impedance is 
high (open circuit).

• Assume amplifier 
output impedance 
and load are also 
high (open circuit).

• Apply nodal 
analysis.

@A(B)CD(B) + @A B 6 @E(B)CF(B) = 0
@E(B)CG(B) + @E B 6 @A(B)CF(B) = 0

Vb(ω)

Z3 = jωL

Z1 =
 1 /jωC1

Z2 =
1 /jωC2

Va(ω)
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@A(B)CD(B) + @A B 6 @E(B)CF(B) = 0
@E(B)CG(B) + @E B 6 @A(B)CF(B) = 0

1CD + 1CF 6 1CF
6 1CF

1CG + 1CF
@A@E = 00

H�� = 1CD + 1CF
1CG + 1CF 6 1CF

1CF
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Solution

51

A valid solution is possible if determinant of matrix is 0

1CD + 1CF
1CG + 1CF 6 1CF

1CF = 0
1CDCG + 1CDCF + 1CGCF + 1CFG 6 1CFG = 0

1CDCG + 1CDCF + 1CGCF = 0
11IB�# J 1IB�$

+ 11IB�# IB
 + 11IB�$ IB
 = 0
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Resonant Frequency

11IB�# J 1IB�$
+ 11IB�# IB
 + 11IB�$ IB
 = 0

6B$�#�$ + �#
 + �$
 = 0
B$�#�$ = �# + �$


B<58 = 1
 �# + �$�#�$
K



2/27/2024

27

Copyright © Prof. Mohammed Hawa Electrical Engineering Department, The University of Jordan 53

Oscillator Design & Analysis

• Approach #1: Positive Feedback

– Main theory in textbooks and references. 

– Uses circuit analysis and control theory.

– View oscillator as two-port amplifier (active element) with 
positive feedback through a linear frequency-selective filter.

• Approach #2: Negative Resistance/Conductance

– Used by several microwave oscillator designers.

– Sometimes named reflection oscillator configuration.

– View oscillator as two circuits: one-port (two terminal) 
negative resistance (or conductance) device (i.e., active 
device) connected to a one-port resonator network (i.e., tank 
circuit).
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Approach #1: 
Positive 

Feedback

54

-L (B) = M(N, B)P(B)-Q(B) + M(N, B)P(B)-L (B)R 

-L (B)(1 6 M(N, B)P(B)R) = M(N, B)P(B)-Q (B) 

-L(B) = M(N, B)P(B)1 6 M(N, B)P(B)R -Q (B) 

-L (B)-Q(B) = M(N, B)P(B)1 6 R M(N, B)P(B) = M(N)P(B)1 6 R M(N)P(B) 
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Oscillation Criterion

• Amplifier transfer function depends on input amplitude A, 
with value greater than 1.

• Transfer characteristics of filter depend on frequency ω.

• Input noise (very small ≈ 0) exists when supply is powered 
ON.

• Oscillations build up when

R M N P B = 1
• Known as Barkhausen criterion.

• Oscillations build up at resonant frequency �<58 of LC tank.

• As oscillation amplitude builds, M N compresses until 
denominator is finite but close to zero (oscillations stabilize).
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Note

• Barkhausen criterion is a necessary criterion 
for oscillation, but not sufficient. It does not 
indicate whether a system is unstable.

• Nyquist criterion is the necessary and 
sufficient criterion for oscillation in feedback 
oscillators.

• Stable oscillation require careful design. 
Unstable oscillator generates chaotic signal 
(rapid amplitude & frequency variations).
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Design Considerations

• Stability: changes of frequency with changes 
in temperature or changes in component 
values (tolerances)

• Signal purity: avoid extra harmonics (i.e., 
distortion).

• Power consumption: affects battery life for 
phones or portable devices.

• Phase noise produced by the oscillator: 
undesirable to amplify noise.

• Theory based on two-port with feedback 
helps in the above design calculations.
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Approach #2: Negative Conductance

58

• Active device H assumed to be negative admittance ST
(generates power).

• Resonator network � is in parallel (shunt) with device, its 
admittance is positive SU (consumes power).

• Conductance M is counterpart of Resistance  (S or V)

• Susceptance W is counterpart of Reactance X (S or V)

• Impedance C =  + IX = 1 S⁄ = 1 M + IW⁄

Active Device

jBrGrjBdGd

Resonator Network

Yd = Gd + j Bd Yr = Gr + j Br
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Kurokawa Condition

• Kurokawa condition for stable (single-frequency) oscillation 
requires ZM[Z- ZW<ZB 6 ZW[Z- ZM<ZB \

]^]_,`^`_
a 0

• -b is oscillation amplitude at the interface of active and resonator 
networks, Bb is oscillation frequency.

• For fixed-frequency oscillator, resonator network is linear so M< and W< are independent of amplitude.
• M< can be designed to be independent of frequency. However, W<

varies with frequency.
• With careful design, active device M[ can be frequency independent 

and W[ can be amplitude independent.

• This gives 
cdec] cfgc` h]^]_,`^`_ a 0
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Example

60

V



2/27/2024

31

Copyright © Prof. Mohammed Hawa Electrical Engineering Department, The University of Jordan 61

Microwave C-band VCO
(4.5 to 5.3 GHz) with TL
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PCB Implementation
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Resonator / Active Device

63


